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[1] This paper addresses the effects of three-dimensional (3-D) radiative transfer on the
retrieval of optical depth for inhomogeneous stratiform liquid water clouds from passive
satellite imagery. A nonparametric Bayesian classifier is developed to identify locations in
a scene where plane-parallel retrievals fail to meet the requirements of a criterion that
dictates a specified level of accuracy. Receiver operating characteristics are introduced that
provide useful metrics that assess the quality of the error identification procedure as
functions of illumination-viewing geometry. By fixing droplet effective radii, distributions
of errors for retrieved optical depth are estimated at a scale of 120 m. These estimates
suggest the best performance that can be expected for optical depth retrievals when 3-D
radiative transfer cannot be ignored. The developments in this paper were made possible
through the use of Monte Carlo radiative transfer simulations on stratiform clouds that
were generated by a cloud system-resolving model. Plane-parallel retrievals employ the
CloudSat optical depth retrieval algorithm.
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1. Introduction

[2] A key parameter that determines how clouds influ-
ence Earth’s radiation budget, hydrological cycle, and
climate in general is their optical depth. Hence, it is essential
that global climate models and numerical weather prediction
models simulate spatiotemporal distributions of cloud opti-
cal depth with some degree of accuracy. In order to verify
how well these models do this requires estimates of cloud
optical depth from global observations. To date, the most
cost-effective means of obtaining such information is from
imagery obtained by satellites equipped with passive sen-
sors that measure emitted terrestrial and reflected solar
radiation. Because these sensors are relatively economical,
they will almost certainly continue to be employed for the
foreseeable future. However, despite advances in the accu-
racy and resolution of multispectral imagers, explicit reli-
ance on plane-parallel solutions of the radiative transfer
equation (RTE) compromises the utility of satellite-inferred
cloud optical depths. This is because most clouds possess
substantial variability near photon mean-free path lengths
which are often close to the resolution of satellite imagery.

[3] Virtually all operational radiative transfer models used
in remote sensing are built on the assumption that clouds are
locally plane-parallel. Moreover, they are applied directly to
passive radiances regardless of pixel resolution and spatial
variations in radiances. The common practice is to discretize
cloudy regions into a grid of columns. Within columns,
clouds are considered as horizontally infinite uniform
sheets, but whose properties can vary vertically. Hence,
through neglect of three-dimensional transport, columns are
assumed not to interact radiatively. Cloud properties are
often deduced by inverting these simple models initialized
by measured radiances. While three-dimensional effects can
be reduced by using spectral intervals where absorption is
relatively strong, the price paid is loss of sampling volume
and sensitivity. Thus, ignoring information contained in the
spatial distribution of satellite radiances leads to retrievals
that are suboptimal, exacerbating the difficulties in attaining
the primary goals.
[4] While several approaches to three-dimensional for-

ward radiative transfer modeling exist, the retrieval problem
lacks a formal theory that will permit practical inversion of
such a model. At any time, optical properties of clouds are
dependent on three spatial coordinates. Even if a cloudy
region is discretized into finite, internally uniform cells, the
dimensionality would still be immense and the problem ill-
posed; if a solution exists, it would not be unique. Further-
more, the results would also depend on the size of the cells
(i.e., spatial resolution). Numerical inversion of the plane-
parallel equation of transfer, which only depends on the
vertical coordinate, is also an ill-posed problem. To retrieve
column optical depth or effective radius of the droplet
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distribution within a cloudy layer, additional constraints must
be imposed to obtain a stable solution. For example, in the
CloudSat optical depth and droplet effective radius retrieval
algorithm, also known as the ‘‘2btau algorithm,’’ the optimal
estimation method described by Rogers [2004] is employed,
driven by MODIS radiances (OEM, http://cloudsat.cira.
colostate.edu/ICD/2B-TAU/2B-TAU_PDICD_3.0.pdf). A
priori constraints in the form of a covariance matrix and a
mean state vector for the optical depth and effective radius
must be introduced with the additional assumption that errors
are distributed normally. A useful feature of this method is
that measurement and model errors can be introduced so that
uncertainties in the retrieved products can be calculated.
However, this feature cannot be relied upon to account for
errors introduced by neglecting three-dimensional radiative
transfer.
[5] Studies of retrieval errors for optical depth and

effective radius of liquid water clouds when 3-D effects
are prevalent have been performed by several authors. For
instance, Loeb and Coakley [1998] concluded that even for
overcast marine stratus layers, the frequently cited ‘‘proto-
typical plane-parallel cloud,’’ inferred optical depths are
overestimated systematically as solar zenith angle increases.
They attributed this to undulating cloud tops. Such cloud
top structures affect the accuracy of the retrievals of optical
depth because they introduce view angle dependence. A
number of other studies have also demonstrated how 3-D
bias errors in optical depth vary according to cloud mor-
phology [e.g., Iwabuchi and Hayasaka, 2002], view and
solar geometry [e.g., Loeb and Davies, 1997], and mea-
surement resolution [Heidinger and Stephens, 2000]. These
results, among others, motivated this series of papers whose
objectives are to quantify the errors caused by the neglect of
3-D radiative transfer, identify regions in a scene where
plane-parallel theory can be used, and develop methods that
can be used even when 3-D effects are extant.
[6] Before describing our approach to this problem, a

perusal of the literature reveals that other methods have
been developed to identify signatures when 3-D transport is
significant. One promising method, based on absorption
spectroscopy was proposed by [Stephens and Heidinger,
2000]. Their method uses oxygen A-band radiances to
compute the photon mean path lengths that serve as
measures of spatial homogeneity. The advantage of this
method is that it unambiguously detects regions of shadows,
as opposed to dark regions of low optical depth and is less
empirical than geometrical methods like those of Varnai and
Marshak [2002]. As yet, however, there are no measure-
ments to assess their technique; though this might change
with the Orbiting Carbon Observatory mission (OCO,
http://oco.jpl.nasa.gov).
[7] The primary objectives just mentioned are elaborated

on further in section 2. Data used throughout these analyses
are described in section 3. Section 4 describes the use of
Bayes’ Theorem in the error identification problem. Results
of using the Bayesian classifier are discussed section 5.
Section 6 introduces the notion of a receiver operating
characteristic (ROC), a graphical representation of the
information contained in a 2 ! 2 outcome matrix which
enumerates the results of applying a test to determine the
state of a system. Only four possibilities exist: a test
indicates the system is/is not in a particular state while in

reality, the system is/is not in that state. The ROC will be
used to define and set thresholds in identifying where in a
scene plane-parallel retrievals will likely fail. Section 7
discusses the connection between the ROC and retrieval
error caused by three-dimensional radiative transfer.
Concluding comments are made in section 8.

2. Objectives

[8] The undeniable practicality of plane-parallel theory, the
computational efficiency of freely available corresponding
computer codes, and the intractability of explicitly address-
ing three-dimensional effects suggest the continuance of
conventional plane-parallel retrieval algorithms. Hence, it is
prudent to establish a mechanism for defining accurate
error estimates owing to the neglect of three-dimensional
transport.
[9] When three-dimensional radiative transfer is extant,

alternates to straight inversion of the 1-D RTE are statistical
retrieval techniques based on 3-D radiative transfer calcu-
lations, at multiple wavelengths, for particular genres of
clouds as simulated by cloud-resolving models (CSRMs).
Such retrievals would displace the problem from being one
of radiation to one of cloud dynamics since the fidelity of
the cloud model used to provide the fields, and not the
three-dimensional transfer, is the factor that will limit
retrieval accuracy. In this paper we formulate a solution to
the error identification problem wherein portions of images
that plane-parallel retrievals are likely to be unreliable,
according to some specified criteria, are signaled in a binary
plot. Forthcoming extensions of this paper, herein referred to
as parts 2 and 3, will develop different statistical methodol-
ogies that exploit the main ideas presented here to accom-
modate the effects of 3-D transport in retrievals of optical
depth with the goals of reducing the bias and variance as
well as solving the error identification problem.
[10] In practice, achieving these objectives will require a

ring of concepts that connect dynamical modeling of clouds,
three-dimensional radiative transfer, and cloud observations
for verification of results. This aspect of the problem can be
stated as follows: operate on fields produced by CSRMs
with a 3-D Monte Carlo photon transport algorithm to
produce simulated radiances; for the error identification
problem, act on these radiances with plane-parallel retrieval
algorithms; and assess error biases and dispersions in the
retrieved products. The error distribution is determined
using all cells in an image where retrievals are performed
and characterizes differences between the retrieved and true
optical or microphysical properties.
[11] The nonparametric statistical methods described

here, and in parts 2 and 3, differ in formulation, but enjoy
a common input, and hereafter are referred to as ‘‘statistical
inference engines,’’ since, in passing from sample data to
generalizations, a certain degree of uncertainty will neces-
sarily be introduced. At this juncture, atmospheric science
overlaps with computer science, mathematics, and statistics
in its search to construct algorithms, or inferential engines,
that can be taught by example but generalize effectively. By
detecting significant patterns in the available data, a system
can be constructed to make predictions about new data
coming from the same source. It is in this sense that we
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mean that a system has acquired generalization power by
‘‘learning’’ something about the source generating the data.
[12] For the sake of clarity and brevity, this paper dis-

cusses the use of Bayes’ Theorem for the error identification
problem only. Part 2 will use neural networks to test
independently the criterion employed here for error identi-
fication by inferring optical depth without use of plane-
parallel radiative transfer and then compares the bias and
variance of the resulting error distribution to the one
obtained from plane-parallel retrievals. It also extends the
criterion in a simple way that enhances the reduction of the
bias of the retrieved optical depths significantly as well as
reducing the variance. Neural networks are not trained to
solve the error identification problem caused by 3-D effects,
but are used as ‘‘pseudoclassifiers’’ to indicate the improve-
ment that might be expected in error identification if 3-D
effects were accounted for by the retrieval. Neural networks
were also used to explore the effects on retrievals of optical
depth introduced by averaging radiances over different
scales. Finally, results obtained from the Bayesian and
neural network inference engines are compared to those
obtained using support vector machines, the subject of part
3. This engine will be used to further analyze the accuracy
of error predictions using the criterion studied here and to
obtain estimates of optical depth using the extended crite-
rion to be discussed in part 2.

[13] We begin with the Bayesian inference engine
because it not only has pedagogical value, but because it
is useful in its own right as a classifier, as well as
introducing the notion of the ROC which will also be of
fundamental importance in part 3 in connection with
support vector machines. In effect, the approach taken in
this paper to classify retrieval error serves as a feasibility
study; a precursor of the more advanced methods described
in parts 2 and 3.

3. Synthetic Data

[14] Throughout the course of this study, output from a
bulk-microphysical CSRM [Stevens et al., 2002] coupled
with assumptions made about particle number concentration
was used to calculate the extinction field at a nominal
wavelength of 0.8 mm. The field is illustrated in Figure 1
(top left). Figure 1 (top right) shows the vertical cross
section of extinction coefficient along the red transect as
shown. Figure 1 (bottom) shows the 3-D volumetric
description of extinction coefficient. A fixed gamma-type
particle size distribution was ascribed with an effective
radius of 10 mm and effective variance of 0.1 for the entire
cloud. The Monte Carlo radiative transfer technique of
Barker et al. [2003] was used to calculate radiances for
several combinations of viewing and illumination geome-

Figure 1. (top left) Spatial distribution of the CSRM’s optical depth calculated for a wavelength of 0.8 mm
and fixed effective radius of 10 mm. (top right) Two-dimensional cross section of extinction along the
transect as indicated on the optical depth plot. (bottom) Volumetric, three-quarters view of the extinction
field. The color bar is also applicable to the extinction cross section.
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tries. The number of photons used to calculate radiances
was 1010. Prior to performing Monte Carlo calculations the
original CSRM data were averaged from 40-m horizontal
grid spacing to 120 m. The vertical resolution of the data
was 20 m. This averaging scale was selected because it just
exceeds the smoothing scale described by Davis et al.
[1997] as calculated using mean cloud physical thickness
of about 440 m, asymmetry factor of "0.85 (used to define
a Henyey-Greenstein phase function), and mean optical
thickness of 14.7. The optical depth standard deviation is
12.9, indicating that this cloud is extremely inhomogeneous,
as is visually apparent.

4. Application of a Bayesian Classifier
to the Error Identification Problem

[15] Computations were performed using spectral direc-
tional radiances contained within a movable square tem-
plate, referred to here as a window. The results presented
here are for a window consisting of 3 ! 3 elements. All
elements were of size equal to that of the cloud data, 120 m.
Although 5 ! 5 windows were also explored, we noted

results comparable to or less accurate than using the smaller
window. Windows were common to all inference engines.
In this paper only the minimum and maximum or extremal
radiances falling within a window are used. In parts 2 and 3,
optical depths are also retrieved in addition to performing
error identification. In those works either the extremal
radiances or all radiances in a window were used. The
hypothesis common to this and the other two papers is that
‘‘small’’ variations in the radiances inside the window will
statistically maximize the likelihood of successful plane-
parallel retrievals. Alternatively stated, our criterion of
spatial uniformity uses two random variables: the minimum
and maximum radiances contained within a window. If
these radiances are identical, the window is deemed uni-
form, and a retrieval based on plane-parallel theory applied
to the central pixel is likely to be accurate. As will be
demonstrated here and in parts 2 and 3, numerical experi-
ments consistently show that these extrema are useful and
robust indicators of inhomogeneity.
[16] In this section the Bayesian inference engine will be

used as a binary classifier to solve the error identification
problem caused by 3-D effects. Bayes’ theorem can be

Figure 2. (a) Frequency of occurrence of the extremal radiances conditioned on failed retrievals. (b) Joint
histogram of the extremal radiances. (c) Posterior probability from which a threshold must be chosen. The
solar zenith angle is 0!, and nadir view and the observer-solar azimuth angle is 0!.
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found in almost any textbook on probability and statistics
[e.g., Duda and Hart, 1973; Duda et al., 2001]. We
summarize briefly the statement of the theorem as follows.
[17] Consider a sample of data which we designate as

‘‘R’’ consisting of Rmin and Rmax. Let H be the hypothesis
that R is to be associated with either ‘‘successful’’ or
‘‘failed’’ retrievals designated as ‘‘S’’ and ‘‘F,’’ respectively.
We wish to determine the conditional probability P (HjR)
that the hypothesis H holds, given the observed R. Hence-
forth we shall generally use ‘‘P’’ to denote probabilities and
‘‘p’’ to denote probability density functions. The latter are
nonnegative and integrate to unity, although the function
p(x) can exceed unity. The quantity P (HjR), called the
posterior determines the probability of a successful or failed
retrieval. In contrast, P(H), called the prior or a priori
probability, for any given data record is the probability of
a successful or failed retrieval in the data record. The
posterior probability is based on more information (such
as background knowledge) than is the prior probability
which is independent of R. The quantity p(RjH), called
the posterior probability density of R conditional on H, is
the probability of observing R given that we know the status

of the retrieval (i.e., whether it has succeeded or failed).
Similarly, the quantity p(R), called the prior probability
density of R, is the probability of observing Rmin and Rmax

jointly within a window. Bayes’ theorem is useful in that it
provides a way of calculating P(HjR) from P(H), p(R), and
p(RjH). Since we wish to relate the probability of a failed
retrieval (H = F) conditioned on a given set of extremal
values {R = (Rmin,Rmax)} to the probability of observing
these values, but conditional on a failed retrieval, Bayes’
Theorem reads

P FjRmin;Rmaxð Þ ¼ p Rmin;RmaxjFð ÞP Fð Þ=p Rmin;Rmaxð Þ: ð1Þ

The application of (1) involves first the creation of tables of
p(Rmin,RmaxjF), P(F) and p(Rmin,Rmax) from a training set
comprising half of the radiances for the synthetic stratiform
cloud shown in Figure 1. Examples of such tables used for
training are illustrated in Figures 2, 3, and 4. Figures 2a, 3a,
and 4a show the cooccurrences of (Rmin,Rmax) associated
with failed retrievals. Figures 2b, 3b, and 4b show the joint
histogram of (Rmin,Rmax). Posterior probabilities shown in
Figures 2c, 3c, and 4c calculated directly from these tables

Figure 3. As in Figure 2 but with a solar zenith angle of 30!, observation angle of 30!, and observer-solar
azimuth angle of 0!.

D06207 GABRIEL ET AL.: STATISTICAL ERROR CLASSIFICATION FOR RETRIEVALS

5 of 16

D06207



exhibit the complexity of the solution space. The funda-
mental problem is the selection of a probability threshold
such that if P(FjRmin,Rmax) exceeds this threshold, the
retrieval at the pixel of interest is classified as failed. Since
the values of the combinations of (Rmin,Rmax) in the training
and test data sets can be very different, calculation of the
posterior probabilities was carried out using a Parzen Kernel
Estimator. This procedure, applicable to nonparametric
distributions uses the precomputed tables to interpolate the
extremal radiances in the untrained data to the conditional
and joint probability densities required by equation (1). A
clear exposition of the latter is given by Duda and Hart
[1973] and Duda et al. [2001]. It is observed that, although
both p(Rmin,RmaxjF) and p(Rmin,Rmax) can exceed unity,
their ratio is less than unity because the former density
function is narrower than the latter owing to the fact that it
uses additional information in its construction. To create a
binary image that discriminates retrieval success from
failure, we must, however, define a threshold to impose
on the probabilities as has been mentioned. We will shortly
describe how this threshold can be determined in an
objective, optimal way. Looking ahead, we develop the
ROC here because it is also used to determine the quality of

the solution to the error identification problem computed by
the support vector machine, to be described in part 3.
[18] The reason for using the ROC is that it is insufficient

to merely assign pixels in ‘‘accept’’ or ‘‘reject’’ categories;
the ROC permits an objective evaluation of the classifier
and provides a criterion for comparing the performance of
different algorithms. In part 3, the performance of the
Bayesian and support vector machine classifiers will be
compared. The latter also computes decision thresholds
from the ROC but does not use conditional probability
densities.

5. Results of Applying Bayesian Classification
to Synthetic Radiance Data

[19] We begin by considering Figure 5a. For this case,
radiances were computed for an overhead sun and nadir
observation. Figure 5b displays the spatial distribution of
error. We have defined the retrieval error as the base 10
logarithm of the ratio of retrieved (t) to true optical depth
(T) because of the large dynamic range spanned by this
quantity and as an aid in plotting. This error criterion is not
‘‘tuned’’ for any particular application, but used here merely

Figure 4. As in Figure 2 but with a solar zenith angle of 60!, observation angle of 30! and observer-solar
azimuth angle of 0!.
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to demonstrate the concept. For example, if the retrieved
optical depth is 10&1 but the true optical depth is 10&2, the
factor of 10 appears large but depending on the application,
may be practically negligible. In the radiance scene shown
in Figure 5a, only 70 pixels out of 28,224 had both zero
radiance and optical depth and 198 pixels had optical depths
less than 0.1. Pixels where T = 0 were flagged as errors to
prevent division by zero in the logarithmic ratio. Hence
results connected with the identification of failed optical
depth retrievals in an image are slightly exaggerated,
reflecting the assumptions used to train the classifier.
[20] In this and subsequent analyses the 2btau algorithm

was set to use a Henyey Greenstein phase function with g =
0.85, discretized into 32 streams, excluding the observation
angles with single scattering albedo set to unity and zero
surface albedo. By setting the aforementioned parameters
equal to those used to calculate 3-D radiances, we eliminate
uncertainties in the surface and optical properties and can
study how spatial inhomogeneities in the cloud field affect
retrievals from the 2btau algorithm or by the table lookup
technique employed by MODIS.
[21] In practical applications, the approach taken here

would have to be extended to include at least two wave-
lengths from which both optical and microphysical proper-

ties can be inferred. However, through a judicious selection
of wavelengths, the radiances would be nearly independent,
resulting in the possibility of factorizing the probability
density functions. The relevance of this section is not
minimized by the use of a single wavelength as it foretells
the likelihood of success in the more general case, indeed
of the success of plane-parallel identification in images
using the technique described in part 3 which also lends
itself well to the use of multiple wavelengths.
[22] Figure 5c maps where the error e, defined by e =

jLog10 t/Tj exceeds 0.25. This choice of e identifies optical
depth retrieval errors exceeding about ±78%. Figure 5e
indicates the locations where the algorithm predicts retrieval
errors are likely. Here, for the sake of simplicity, we will
assume that 3-D effects will introduce errors of similar
magnitude to both MODIS and CloudSat retrieval methods,
since the forward models in both cases are plane-parallel,
though even here, differing in detail.
[23] This matter will be discussed in greater depth in the

conclusions. Since the CloudSat retrieval algorithm was
readily available, we used it to perform the numerical experi-
ments. We postpone the discussion of how retrieval errors
were computed until the ROC is introduced in section 6.

Figure 5. (a) Scene radiance (image size is 168! 168 pixels, 120 m per pixel; coordinates X and Yare in
kilometers) for the case described in Figure 2. (b) Base 10 logarithm of the ratio of retrieved (t) to true optical
depth. (c) Retrieval error e > 0.25 (see text). (d) Receiver operating characteristic which indicates the
accuracy of the classifier and is used to determine operating thresholds. (e) Predictions of optical depth
errors using the Bayesian classifier, to be compared to Figure 5c. The mottled appearance of Figure 5e is the
result of excluding the training set.
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[24] The effects of changing solar zenith angle and
viewing angle on the predicted retrieval error locations are
illustrated in Figures 6 and 7. Properties of the error
distributions of the retrieved optical depths as they are
affected by viewing and solar zenith angles are discussed
in section 7.

6. Using the ROC

[25] The ROC has its origins in the development of radars
where it was applied to the processing of signals to ascertain
the presence of targets in weak, noisy echoes via the setting
of discrimination thresholds. Signal echoes exceeding these
thresholds were classified as targets. The criterion was
strongly motivated by the desire to understand how the
U.S. radar ‘‘receiver operators’’ missed Japanese aircraft
during the attack on Pearl Harbor. The criterion finds
extensive usage in psychophysics [Green and Swets,
1966; Swets, 1973], machine learning [Provost et al.,
1998; Hand and Till, 2001], evidence-based medicine such
as radiology [Hanley and McNeil, 1982; Swets, 1988], and
in the atmospheric sciences [Olson, 1965; Mason, 1979,
1982; Murphy and Winkler, 1987; Doswell et al., 1990;
Harvey et al., 1992; Wilks, 1995; Mason and Graham,
1999].
[26] In the biomedical field, interest in the ROC centers

on issues connected with sensitivity (a measure of how well
a test can pick out patients with a disease) and specificity

(the ability of a test to pick out patients who do not have the
disease). Interest is not necessarily focused in the predictive
probability that someone has a disease, but rather on a test
(e.g., the concentration of white blood cells in checking for
leukemia) and a test threshold that allows accurate identi-
fication and treatment of diseased individuals. The uses of
ROC curves, which assess the discriminatory power of
diagnostic tests in correctly classifying diseased and non-
diseased individuals, are designed to address these kinds of
questions. The ROC concept can be understood by consid-
ering Figure 8, which shows the probabilities of pixels in an
image associated with successfully classified and failed
optical depth retrievals. The horizontal axis is the quantity
P(FjRmin,Rmax), a threshold that for the moment is specified
arbitrarily. The solid vertical line corresponds to some
threshold that demarcates the decision boundary. For
(Rmin,Rmax) combinations resulting in P(FjRmin,Rmax) > g,
the decision would be to classify the central pixel in the
window in the failed category.
[27] Errors are classified as either a miss or a false alarm.

A miss occurs when the classifier fails to detect error in the
retrieval, while a false alarm occurs when a classifier
predicts an incorrect retrieval when in fact the retrieval
was successful. Likewise, there are two types of correct
classifications: a hit or a correct reject. In a hit, the classifier
correctly predicts the occurrence of a retrieval failure,
whereas in a correct rejection the classifier indicates the
absence of retrieval error. The analogy between a physician

Figure 6. As in Figure 5 but with a 30! solar zenith angle, 30! observation zenith angle, and an
observer-solar azimuth angle of 0!.
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and patient is clear; the physician must inform the patient of
the presence or absence of a disorder which the patient may
or may not have. By setting the test threshold to a low value,
the number of hits increases as do the number of false
alarms. Setting the threshold too high will result in a large
number of misses, but fewer false alarms. No matter where
the test threshold is set, the incurrence of error is certain,
reflecting our inability to separate classes perfectly. The
frequency of error is a function of how far apart the means
of the distributions are apart from one another as well as the
width of the distributions. Narrow distributions separated by
and large distances would result in a classifier having the
low error rate. The question of threshold selection will be
discussed in this section after describing how the ROC is
calculated.
[28] In the context of our problem, TROC is a threshold

used to discriminate between two kinds of predictions that
the classifier can make. A ‘‘true positive rate’’ (tpr) is a
situation that is predicted to have e > 0.25 when in fact e >
0.25. A ‘‘false positive rate’’ (fpr) is a situation that is
predicted to have e > 0.25 when in fact e < 0.25. The ROC
is a plot of tpr versus fpr as shown in Figure 9 (left). Any
point on this curve is uniquely determined by the threshold.
The best possible prediction would produce a single point in
the upper left corner of the ROC space, where only true
positives and no false positives are found. If the predictor
were completely random, it would result in a 45 degree line
from the horizontal with intercept at the origin, often called
the ‘‘line of no discrimination’’ since increasing the thresh-

old would admit as many true as false positives. Below this
line, the predictor would consistently give incorrect classi-
fications. In fact, prediction would improve by inverting the
classifications.
[29] The determination of a threshold that is used to

decide whether a pixel in a scene is to be placed in the
‘‘accept’’ or ‘‘reject’’ categories is based on a criterion that
accounts for the importance of false alarms and misses.
Many criteria are possible and several examples are dis-
cussed by Peterson et al. [1954]. Decision errors may have
greater consequences in one application than in another.
Bayes’ rule is versatile in that it can accommodate costs of
making incorrect decisions. For example, costs can be
ascribed to a false alarm or a miss, designated here as
CF,S and CS,F respectively. Costs can also be ascribed to
correct classifications; these are designated by CS,S and CF,F.
The first subscript in Ci,j {i,j} 2 S,F} indicates the hypoth-
esis chosen and the second, the hypothesis that was true.
Generally, costs are set according to the requirements of an
application and their effect is to introduce a bias. Expressed
in terms of the likelihood ratio, the decision rule can be
written as [Van Trees, 2001]

L Rmin;Rmaxð Þ ¼ P Rmin;RmaxjFð Þ
P Rmin;RmaxjSð Þ

<F

>S

P Sð Þ CF;S & CS;S

! "

P Fð Þ CS;F & CF;F

! " ; ð2Þ

where the inequalities dictate rejection if the left side is less
than the right, acceptance otherwise.

Figure 7. As in Figure 5 but with a 60! solar zenith angle, 30! observation zenith angle, and an
observer-solar azimuth angle of 0!.
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[30] The importance of an incorrect decision is assessed
in terms of its consequential costs, relative to making a
correct decision. In our application, these features are
embodied within the concept of the likelihood ratio as given
by equation (2) which can be connected to the ROC
analytically. It can be proved [Van Trees, 2001; Marques
de Sá, 2007] that the derivative of the ROC is equal to the
likelihood ratio. The optimum threshold for the two class
problem is given by

d tprð Þ
d fprð Þ ¼

false positive cost ¼ CFSð Þ
false negative cost ¼ CSFð Þ

1& P

P

# $

; ð3Þ

where P is the prior probability of failure and the costs of
correct classification CS,S = CF,F = 0. Insightful discussions
regarding the introduction of costs are given by Zweig and
Campbell [1993]. The point on the ROC plot where a
tangent line having a slope equal to that given by (3) is the
optimal threshold for the given costs and prior.
[31] When the number of failed and successful retrievals are

equal, (P = 0.5) and for equal misclassification costs, the
resulting slope of the tangent line is unity. A slope of unity can
also be obtained by setting CF,S = (1 & P)&1 and CS,F = P&1,
equivalent to setting the cost ratio

CF;S

CS;F
¼ P

1&Pð Þ, which is the
condition employed in the analyses.
[32] We also explored the case when CF,S = CS,F but only

mention that the results of these experiments showed a
consistent tendency of the classifier to report a larger false
positive rate than for the unit-slope classifier with the
aforementioned cost ratio.
[33] To motivate using the unit slope classifier, consider

points A, B and C and the tangent lines at those points as
shown in Figure 9. Derivatives of the ROC d(tpr)/d(fpr) less
than unity (e.g., at point C) indicate that small changes in tpr
will change fpr by a significant amount. Similarly, points on
the ROC where derivatives exceed unity (e.g., point A)

Figure 8. (top) Vertical axis refers to the probability of
successful or failed retrievals. The horizontal axis designates
the test threshold. At the position indicated by the heavy
vertical line, we are assured of identifying a large number of
failed retrievals or hits as indicated by the shaded area to
the right of the line and a few misses to the left. (bottom)
A desirable high correct rejection rate but perhaps an
unacceptably large false alarm rate. The overlapping distribu-
tions introduce inevitable ambiguity in classification.

Figure 9. (a) ROC curve of Figure 5. The area in blue is used as a metric of accuracy of the classifier
(see section 7 for discussion). The 45! black, major diagonal line is the line of no discrimination. Points
A, B, and C are used to explain properties of the slopes of the ROC curve computed for solar zenith angle
of 0! and nadir observation. (b) Variation of tpr and fpr values, designated by the rates ordinate with
threshold. The black tpr and red fpr curves associated with Figure 5 depict an accurate classification; the
green tpr and yellow fpr curves, associated with Figure 7, are very similar, suggesting that the ROC will
lie near the line of no discrimination.
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indicate that small changes in fpr will cause significant
changes in tpr. Thus the point on the ROC where its
derivative is unity (e.g., point B) is optimal in the sense
that small perturbations about this point will not introduce
significant changes to the threshold. Point B is located at the
intersection of the minor diagonal, depicted by the red line
with the ROC. From this point, a line parallel to the fpr axis
is drawn intersecting the tpr axis. This point of intersection
gives tpr. In a similar way, fpr may be found. In general,
prior to the taking of derivatives, the ROC must be plotted.
For example, to compute the ROC associated with Figure 5,
one proceeds iteratively. First, P(FjRmin,Rmax) is calculated
from the training set. This probability is compared with a
(variable) threshold inside a loop. If it exceeds the thresh-
old, both tpr and fpr are computed, as these quantities
change with the threshold. The resulting plot is shown in
the lower central row of Figure 5. The ROC plots shown in
Figures 6 and 7 are calculated for the indicated illumination
and viewing geometries. It is seen that as retrieval perfor-
mance deteriorates, the ROCs approach the major 45!
diagonal. The physical reasons for this behavior are further
discussed in section 7.
[34] The inherent nature of ROCs results in their deriv-

atives being generally very noisy. For instance, Figure 10
shows the numerical derivative of ROC shown in Figure 5.
Clearly, accurate estimation of fpr given a particular slope is
extremely difficult. Filtering the ROC data helps attenuate
noise, but since differentiation amplifies high-frequency
noise, it is often unsatisfactory. Differentiation of noisy
functions is known to be an ill-posed problem. While the
literature abounds with techniques for data smoothing and

differentiation [e.g., Wood, 1982; Woltring, 1985, 1986], we
offer yet two methods that exploit the symmetry and
smoothness of ROCs encountered in this application. In
part 3 a different way of computing the ROC is employed
that uses results of a nonlinear regression in connection with
support vector machines.
[35] An inspection of the data used to produce the plots

shown in Figures 5, 6, and 7 reveals the ROC curves are
nearly symmetrical about the minor diagonal. For symmet-
rical ROCs, a chord of the ROC perpendicular to the minor
diagonal will be bisected by that diagonal. The minor
diagonal delineates the points of no bias for the ROC.
Points to the right of the minor diagonal indicate a bias
toward increasing failure rates; those to the left of the
diagonal indicate a bias favoring a reduction in the false
alarm rate.
[36] A priori, such near symmetry was not expected and

is probably due to the widths of the distributions illustrated
in Figure 8 being about the same. For the moment, we shall
require the curves to be symmetrical, but shortly relax this
constraint. For reasons discussed above in connection with
the selection of point B in Figure 9 as the point least
sensitive to perturbations, we observe that symmetry about
the minor diagonal places that point closest to (0,1),
associated with the absence of false alarms. Numerical
experiments show that for the special case of unit slope,
the (fpr, tpr) combination that minimizes the Euclidean
distance to (0,1) is a good approximation of the operating
point. This simple metric leads to the development of a
robust, efficient algorithm that can be automated and was
used to determine the thresholds for the cases described in
this text. We tested the accuracy of this metric by comparing
its results to those of a much more general algorithm fully
described in the appendix and in general, the agreement was
excellent as can be see in Table A1 in Appendix A. The
more general method does not require symmetry in the
ROC and can accommodate any slope; important consid-
erations for choices of cost functions other than the ones
used here. In essence, this algorithm approximates the ROC
over an interval using a Padé approximant. Sampling data
points over an interval repeatedly leads to the calculation of
new Padé coefficients that allow the derivative to be
calculated analytically. The optimal fpr from the ensemble
of solutions is obtained by analyzing the median which is
robust to outliers. The method was also applied to very
general ROCs that were scanned from the paper of Zweig
and Campbell [1993] in a separate study not documented in
this paper.

7. Understanding Retrieval Error in Terms
of Conditional Probabilities and the ROC

[37] In section 4, we proposed the hypothesis that
extremal radiances contained within a grid of a given size
are useful metrics of inhomogeneity. Here we wish to
explore the consequences of that hypothesis by connecting
the pdfs calculated by Bayes’ theorem to the computed
ROCs. To motivate this discussion, we first consider the
simplest situation: a hypothetical plane-parallel atmosphere.
In this case, because the radiances are spatially uniform for
a given observer, sun geometry, the minimum and maxi-
mum radiances within a (movable) grid of any specified size

Figure 10. Derivative of the ROC curve computed for
solar zenith angle of 0! and nadir observation. The noisiness
of the derivative is clearly evident, even though the
corresponding ROC in Figure 5 appears to be smooth.
The horizontal line depicts the tangent for the unit-slope
classifier. The solid circles represent the 10th, 30th, 70th,
and 90th percentiles used to analyze the results of the
method described fully in Appendix A. The open circle is
the median solution to the optimal operating point, or
threshold, fpr = 0.123, which is comparable to the solution
obtained by the Euclidean distance approach described in
the text.

D06207 GABRIEL ET AL.: STATISTICAL ERROR CLASSIFICATION FOR RETRIEVALS

11 of 16

D06207



would be identical; hence a plot of Rmin versus Rmax will be
a single point. Thus, plane-parallel retrievals will succeed
since P(FjRmin, Rmax) = 0 and the ROC plot is the single
point at (0,1).
[38] Next we consider noninteracting plane-parallel cells

of equal size, for example arranged in the pattern of a
checkerboard. If the size of the moving grid exactly equals
the size of the cells there would be no retrieval error. A plot
of Rmin versus Rmax is a line of unit slope passing through
the origin. However, the joint frequency histogram of (Rmin,
Rmax) along that line would exhibit variation. In this case
too, the ROC is a single point at (0, 1).
[39] If the radiances within the moving grid are now

averaged over two or more cells, as might be necessary in a
retrieval, then errors would be generated, because Rmin 6¼
Rmax within the grid. Thus, there exists a single critical scale
where there is no retrieval error for this situation. Averaging
of the radiances within the moving grid would introduce
nonuniqueness, since now a mean radiance would not
necessarily correspond to a single optical depth. The
retrieval error would be clearly dependent on the averaging
scale. Points would start filling the region below the 45!
line, resulting in the generation of a nontrivial ROC plot. As
the number of errors increases, we might expect the ROC to
start approaching the line of no discrimination assuming
there were as many correct as incorrect retrievals.
[40] In three dimensions, averaging is still present and its

action more subtle than the example just given. The
emerging remotely sensed radiance over a given column
in a scene is no longer simply related to the optical depth
beneath that column, but a weighted average of photons
entering that column from (theoretically) all locations in the
cloud. The weights or contributions of photons from distant
locations to the total radiance exiting at the observation
angle over the column of interest will be small owing to
their large probability of out-scattering caused by the
presence of holes or by scattering by the intervening
medium. However, this averaging of photons does not
necessarily produce unique radiances and is portrayed by
the ROC as a loss of discriminatory power between failed
and successful retrievals through its curvature, recalling
how ‘‘failure’’ has been previously defined.

[41] The location of the failures is predicted accurately by
the Bayesian approach, while a quantitative measure of its
accuracy is provided by the ROC curve. In an independent
set of tests using neural networks, and by comparison to the
support vector machine classifier to be discussed in parts 2
and 3 of the series, we show that the accuracy of the simple
Bayesian classifier is of practical utility.
[42] In Figure 11, histograms of retrieval errors show the

presence of a bias that may be either positive or negative.
Figures 11a&11c, the displacements of the peaks from the
origin are +0.123, &0.161 and &0.262 units respectively or
at the peaks, t = 1.33T, 0.69T and 0.55T, suggesting that,
with the exception of the largest in-magnitude displacement,
the bias may be more detrimental to applications requiring
optical depths of order unity.
[43] For example a 40% error on an optical depth of unity

is radiatively more significant than on an optical depth of
10. Figures 11a&11c also show that the error histograms
become wider as both the viewing angle and solar zenith
angle increase. The exacerbation of retrieval error is with
increasing solar zenith angle is consistent with the findings
of Loeb and Davies [1996] and Loeb and Coakley [1998].
These results underscore the importance of the solar geom-
etry and viewing angles associated with 3-D transfer and the
effects they exert on retrievals as measured by both bias and
variance in the retrieved optical depth error distributions. In
part 2, retrievals of optical depth using neural networks
employing extremal radiances show the utility of these
radiances by virtually eliminating all bias even for case C,
making the distribution of error more symmetrical and
reducing the variance most noticeably for that case.
[44] An additional benefit derived from using ROC

curves is that it allows direct comparisons of the effective-
ness of different tests (with different units) by transforming
the power of each test into one common unit, the area under
the curve defined here, for example, as the area of the blue
region in Figure 9 incremented by a half. The increment
accounts for the area of the triangular region under the
major diagonal. This means that, for instance, if instead of
using extremal radiances, one used the mean and standard
deviation in a moving window, the area under the curve
could be used to objectively compare the performance of the
classifiers. This area, a nonparametric statistic can be shown

Figure 11. Distribution of optical depth error. Cases depicted in Figures 11a, 11b, and 11c were computed
for the observer-solar geometries described in the captions of Figures 5, 6, and 7, respectively.
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to be equivalent to the Mann-Whitney test [Mann and
Whitney, 1947] which tests for difference in median between
the scores obtained by the two categories (i.e., ‘‘successful’’
or ‘‘failed’’ retrievals) considered in this study.
[45] The area under the ROC curve provides a useful

measure of the probability that when a random selection of a
correct and incorrect classification is made, the predictor (or
classifier) will assign a higher score to the correct than to
the incorrect classification. The areas presented in Table 1
calculated from the ROCs, are in excellent agreement with
our subjective sense of quality of the predicted problem
locations given by Figures 5–7. In addition to Figures 5–7,
several ROCS with different viewer-illumination geometries
were analyzed but not presented owing to lack of space. The
areas for these cases are reported here because they will be
compared to those computed from an entirely different
method based on support vector machines in part 3.

8. Concluding Comments and Remarks
on Bayesian Classification

[46] At this point some observations and comments are in
order. To begin, we remark that the Bayesian classifier is
optimal if the statistics of the process are known. The
probabilities arising in the analyses cannot be represented
by parametric forms such as Gaussians, so computation of
the probability densities is necessary. Use of nonparametric
statistics is actually a feature of the classifier. It is also,
however, a potential source of difficulty if the joint prob-
ability density function is of high dimensionality, as this
would introduce sampling problems. In this application,
nonparametric statistics are still useful because the proba-
bility densities required by the classifier depend on only two
features: Rmin and Rmax. In the development of the Bayesian
inferential engine, no attempt was made to estimate cloud
optical depth mainly because of the difficulty in comparing
the results of such attempts to those where more than two
radiances could be employed. While it is theoretically
possible to use more than two radiances to perform optical
depth retrievals, evaluation and storage of such higher-
dimensional probability densities would be impractical.
The task of retrieving optical depths without using plane-
parallel theory is left to parts 2 and 3 whose inferential
engines do not require probability distributions as inputs
and thus can more thoroughly characterize the accuracy of
retrievals employing extremal radiances.
[47] Equation (1) is implicitly dependent on the observer’s

zenith angle, solar zenith angle and the azimuth between the

observer’s viewing plane and the Sun. Thus, at a given
scale, all the probabilities for different viewing and solar
geometries must be computed and stored in a database. The
availability of fast computers and mass storage technologies
make this a feasible undertaking for a finite number of
discrete angles. In practical applications, it would be nec-
essary to use data computed for angles most closely
matching those observed. Monte Carlo simulations, that
exploit parallelism for the sake of efficiency, would be
suitable for this task. Alternatively, it would be necessary
to interpolate observed radiances to those in the database; a
procedure described by Cornet et al. [2004, 2005] that relies
on the use of neural networks. Since parts 1–3 are explor-
atory, focusing on understanding the issues connected with
the use of different inferential engines in retrievals, their use
in error classification and ascertaining the best accuracy that
can be expected by such methods, interpolation of radiances
is not attempted.
[48] The boundary layer stratiform clouds considered here

are comprised entirely of liquid water droplets. Such clouds
are common and climatologically significant because they
reflect much solar radiation yet their temperature is often
close to that of the surface; thus they exert a cooling effect.
The morphology of stratiform clouds is not of singular
character as can be confirmed by even casual observation.
Although internally inhomogeneous, we require these
clouds to occupy a physically large area and lack well
defined structures such as streets, ideally, to be statistically
spatially homogeneous. This is reasonable since we expect
cloud streets to exhibit strongly oriented radiances, where
rotating the cloud field, while maintaining observer-Sun
geometry, affects radiance patterns. Furthermore, radiances
would also be sensitive to other uncontrollable factors such
as cloud height and street spacing. Sensitivity to rotation
would introduce errors in the generalization, affecting the
practicality of using inference engines. We assert that for
stratiform clouds having the properties stated, inference
engines will be relatively insensitive to rotations of the
cloud field, provided that the sample of cloud fields is
sufficiently large. Radiances will still, however, exhibit a
dependence on azimuth; a moment‘s reflection should
convince the reader that this must be the case, since such
dependence applies even to plane-parallel media owing to
highly anisotropic scattering phase functions.
[49] This study, as well as parts 2 and 3, focuses exclu-

sively on liquid water clouds since their particle size
distributions and shape are much more constrained than
they are for cirrus clouds [Cooper et al., 2006] for example.
In fact, uncertainties in radiances due to ice crystal shape
can compete with uncertainties in the radiance due to spatial
inhomogeneities [Tsay et al., 1996]. On the contrary, for
clouds comprising water droplets, while the effects of non-
sphericity are eliminated, uncertainty is introduced through
the specification of particle size distribution which governs
extinction. For such clouds, it seems that a thorough study
into the effects of particle size distribution uncertainty on
retrievals is lacking; but according to Arduini et al. [2005],
uncertainty in the variance of droplet size distribution
affects retrievals of effective radius more strongly than
retrievals of optical depth. The operational 2btau CloudSat
retrieval also calculates the effective radius for an assumed
lognormal droplet size distribution because the effective

Table 1. Areas Under ROC Curve for Indicated Solar and
Viewing Zenith Anglesa

Reference Geometry Area

q0 = 0, qv = 0 0.94
q0 = 0, qv = 30 0.86
q0 = 0, qv = 60 0.71
q0 = 30, qv = 0 0.89
q0 = 30, qv = 30 0.81
q0 = 30, qv = 60 0.64
q0 = 60, qv = 0 0.67
q0 = 60, qv = 30 0.65
aSolar zenith angle, q0; viewing zenith angle, qv. Scores in bold letters,

top, middle, and bottom, were computed using Figures 5, 6, and 7,
respectively. Other scores are associated with the results of analyses of
cases not presented are reference points for part 3.
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radius acts as a constraint to reduce the error in the optical
depth retrieval (R. Austin, personal communication, 2008).
[50] It might be argued that use of CSRM (and other

model) data as proxies for naturally occurring stratocumulus
clouds is a fundamental weakness of all inferential methods.
On the other hand, all retrievals, including data assimilation,
assume that the forward models used are ‘‘reasonable’’
approximations to processes occurring in the atmosphere.
In such models, certain outputs approximate the true state of
nature more than others. Otherwise, what purpose would a
cloud model serve if it did not capture some essential
characteristics of real clouds?
[51] In using any inferential method a certain model

dependency is expected. For example, the spatial statistics
of the cloud field will affect the Bayesian classifier in a way
that is unknown since three dimensional radiative transfer,
used in training, is sensitive to cloud morphology, considered
here to be random functions. We do not view these factors as
fundamental limitations, but rather as avenues requiring
further exploration. For instance, how does the accuracy of
the classifier change when it is trained on one model and
applied to the output of another? Such information may be
useful in answering how different assumptions in models

(e.g., subgrid turbulent closures, cloud microphysics, etc)
affect the statistical properties of simulated clouds. Even if
the Bayesian classifier is robust to variations in cloud spatial
statistics, which is necessary for it to be operationally useful,
it would ultimately have to be verified, perhaps by in situ
measurements of cloud microphysical and optical properties
over some limited domain, in conjunction with satellite
radiances. Clearly, this task cannot be performed routinely.
While it is true that real and model clouds differ, the question
here is one of extent. In this study, what is of interest is
knowledge of how model departures from real clouds affect
the error statistics of retrieved quantities. An analysis of such
departures would benefit this work as well as both the
modeling and observational communities by establishing a
useful symbiosis that seems, at present, to be missing.

Appendix A

[52] It has already been shown that derivatives calculated
from ROCs obtained through the analysis of data can be
very noisy. It is, however, possible to develop an algorithm
that exploits the relative smoothness of ROCs typically
found in this application. The method approximates a
portion of the ROC, over the range Dfpr that contains
d tprð Þ
d fprð Þ = s with the Padé approximant

tpr fprð Þ ¼

X

N&1

n¼0

an fprð Þn

X

N

n¼0

bn fprð Þn
; ðA1Þ

where an and bn are coefficients with bN = 1 [Brezinski, 1973].
First, define the width of the range Dfpr that (A1) is to be
generated alongwith the value of s. Then, using the computed
values of the ROC, find the smallest value of fpr =a such that

tpr bð Þ & tpr að Þ
b & a

< s;

where b = a + Dfpr. The interval [a,b] will contain the
solution. As 2N pairs of (fpr,tpr) are required to solve for
an and bn in (A1), subdivide [a,b] into 2N equal subranges
of width Dx separated by intervals xDx where x < 1.
Hence,

Dx ¼ Dfpr

2Nþ 2N& 1ð Þx½ ) :

From each of the 2N subranges, using a uniform
distribution within each subrange, randomly select a value
of fpr, and from that, choose the closest fpri,tpri)i = 1,. . .,N,
from the computed values of the ROC. Using the 2N
ordered pairs, solve for the coefficients in (A1) [Brezinski,
1973]. Then, differentiating (A1), solve

X

N

n¼0

bn fprð Þn
 !

X

N&1

n¼0

nan fprð Þn&1

 !

&
X

N

n¼0

nbn fprð Þn&1

 !

X

N&1

n¼0

nan fprð Þn
 !

X

N

n¼0

bn fprð Þn
 !2

& s ¼ 0; ðA2Þ

for fpr. If it turns out that the denominator in the first term
of (A2) has a root in [a,b], simply discard it and randomly
select another four (fpri, tpri).
[53] It was found, by experimentation that N = 2 is

adequate for the purpose at hand. As such, (A2) reduced
to the quartic equation

s fprð Þ4þ 2sb2 fprð Þ3þ s b22 þ 2b1
! "

þ a2
% &

fprð Þ2þ 2sb1b2 þ 2a1ð Þ fprð Þ
þ sb21 & b1a2 þ b2a1
! "

¼ 0; ðA3Þ

which can be solved readily in closed form for fpr.
[54] What this technique does is approximate the mono-

tonically increasing, piecewise-continuous ROC over the
range [fpr1,fpr2N] by a continuous function, with continuous
derivative, and solve for the point whose tangent has a slope
s. This is achieved using information about the ROC from a
neighborhood around the solution. One does not want to
make Dfpr too small for too little information about the
ROC will be sampled. Similarly, making Dfpr too large will
often force the fit to be too approximate near the solution.
The solution depends on Dfpr, x and the 2N random
samples drawn from the subranges. By employing the
bootstrap technique, that is, performing this process many
times using randomly sampled values of Dfpr, x, and
ordered pairs, it is possible to estimate uncertainties on
the estimate of fpr at slope s with the estimated value itself
being the median of the resulting distribution of solutions.
[55] The bootstrap portion of the solution uses a large

number of sample solutions of (A3). One hundred samples
were found to be sufficient (though the routine is very fast
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and, in all likelihood, 1000 samples could be tolerated
easily in an operational setting). During bootstrap sampling,
Dfpr and x were produced by

Dfpr ¼ 0:1þ 0:3& 0:1ð ÞR ðA4Þ

x ¼ 0:3þ 0:7& 0:3ð ÞR; ðA5Þ

where R is a uniform random deviate on [0,1]. Of the two,
the solution depends much more on Dfpr. Figure A1 shows
how several percentiles of the solution depend on Dfpr
assuming (A5) and s = 1 for the ROC shown in Figure 5.
Figure 10 shows the bootstrap-generated distribution of
solutions assuming (A4), (A5), and s = 1 (of the samples
used to produce these estimates, "2.5% of them were
rejected owing to a root in the denominator of (A2) inside
[a,b]). The median is 0.123 while its interquartile range,
almost symmetric about the median, is 0.019.
[56] The method requires initially, operator intervention

to set up a and Dfpr as in (A4) and (A5) before the
calculation can begin. For example, in (A4) the lower limit
Dfpr is set to 0.1 and will attain a maximum value of 0.3
when R = 1. Practically, there is no significant issue
connected with the finite number of combinations of data
points in the subintervals (see Press et al. [1992] for a
discussion on bootstrapping via sampling with replace-
ment). The quality of the fpr operating point is indicated
by the separation of the 10% and 90% percentiles.
[57] Although quartics generally have four roots, it was

observed that, for the ROCs calculated in this paper, the
roots were never complex. Frequently, doublets were pro-
duced outside [a,b], the third root was usually negative, and
the last root lay inside the [a,b]. Several other possibilities
exist, but to minimize ambiguity, the algorithm is forced to
utilize solutions containing just one root in [a,b].
[58] For the special unit slope case, the algorithm has an

optional switch that allows testing of the roots using the
minimum Euclidean distance test, described in section 6,
when solutions with more than one root in [a,b] are
allowed. For the cases considered here, such cases existed
for about 10% to 30% of the simulations. Table A1 lists
results for several different ROCs. Note that the minimum

Euclidean distance from (0,1) to the ROC appears generally
to approximate the analytic routine to within about 10%.
[59] Finally, filtering the ROC curves provided minimal

benefits for the ROCs used in this study. However, in a
separate study of this method, using data from Zweig and
Campbell [1993], the algorithm benefited notably as it
reduced the difference between the 10% and 90% percentiles.
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